73 research outputs found

    Labelled network capture generation for anomaly detection

    Get PDF
    In the race to simplify man-machine interactions and maintenance processes, hardware is increasingly interconnected. With more connected devices than ever, in our homes and workplaces, the attack surface is increasing tremendously. To detect this growing flow of cyber-attacks, machine learning based intrusion detection systems are being deployed at an unprecedented pace. In turn, these require a constant feed of data to learn and differentiate normal traffic from abnormal traffic. Unfortunately, there is a lack of learning datasets available. In this paper, we present a software platform generating fully labelled datasets for data analysis and anomaly detection

    L'AIS : une donnée pour l'analyse des activités en mer

    Get PDF
    4 pages, session "Mer et littoral"International audienceCette contribution présente des éléments méthodologiques pour la description des activités humaines en mer dans une perspective d'aide à la gestion. Différentes procédures, combinant l'exploitation de bases de données spatio-temporelles issue de données AIS archivées à des analyses spatiales au sein d'un SIG, sont testées afin de caractériser le transport maritime en Mer d'Iroise (Bretagne, France) sur les plans spatiaux, temporels et quantitatifs au cours d'une année

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade’s Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    Secured Architecture for Unmanned Surface Vehicle Fleets Management and Control

    Get PDF
    Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work helps in accelerating the mitigation process by notifying the operator with additional information when an anomaly occurs. This additional information includes the probability and confidence level of event(s) occurring. The model is trained and tested using a real-world dataset

    Leveraging siamese networks for one-shot intrusion detection model

    Get PDF
    The use of supervised Machine Learning (ML) to enhance Intrusion Detection Systems (IDS) has been the subject of significant research. Supervised ML is based upon learning by example, demanding significant volumes of representative instances for effective training and the need to retrain the model for every unseen cyber-attack class. However, retraining the models in-situ renders the network susceptible to attacks owing to the time-window required to acquire a sufficient volume of data. Although anomaly detection systems provide a coarse-grained defence against unseen attacks, these approaches are significantly less accurate and suffer from high false-positive rates. Here, a complementary approach referred to as “One-Shot Learning”, whereby a limited number of examples of a new attack-class is used to identify a new attack-class (out of many) is detailed. The model grants a new cyber-attack classification opportunity for classes that were not seen during training without retraining. A Siamese Network is trained to differentiate between classes based on pairs similarities, rather than features, allowing to identify new and previously unseen attacks. The performance of a pre-trained model to classify new attack-classes based only on one example is evaluated using three mainstream IDS datasets; CICIDS2017, NSL-KDD, and KDD Cup’99. The results confirm the adaptability of the model in classifying unseen attacks and the trade-off between performance and the need for distinctive class representations.</p

    Improving SIEM for critical SCADA water infrastructures using machine learning

    Get PDF
    Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work focuses on notifying the operator when an anomaly occurs with a probability of the event occurring. This additional information helps in accelerating the mitigation process. The model is trained and tested using a real-world dataset. Document type: Part of book or chapter of boo

    Local and global spatio-temporal entropy indices based on distance- ratios and co-occurrences distributions

    Get PDF
    When it comes to characterize the distribution of ‘things’ observed spatially and identified by their geometries and attributes, the Shannon entropy has been widely used in different domains such as ecology, regional sciences, epidemiology and image analysis. In particular, recent research has taken into account the spatial patterns derived from topological and metric properties in order to propose extensions to the measure of entropy. Based on two different approaches using either distance-ratios or co-occurrences of observed classes, the research developed in this paper introduces several new indices and explores their extensions to the spatio-temporal domains which are derived whilst investigating further their application as global and local indices. Using a multiplicative space-time integration approach either at a macro or micro-level, the approach leads to a series of spatio-temporal entropy indices including from combining co-occurrence and distances-ratios approaches. The framework developed is complementary to the spatio-temporal clustering problem, introducing a more spatial and spatio-temporal structuring perspective using several indices characterizing the distribution of several class instances in space and time. The whole approach is first illustrated on simulated data evolutions of three classes over seven time stamps. Preliminary results are discussed for a study of conflicting maritime activities in the Bay of Brest where the objective is to explore the spatio-temporal patterns exhibited by a categorical variable with six classes, each representing a conflict between two maritime activities

    A review of cyber-ranges and test-beds:current and future trends

    Get PDF
    Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs dimensions, as well as, highlighting a diminishing differentiation between application areas

    A taxonomy and survey of intrusion detection system design techniques, network threats and datasets

    Get PDF
    With the world moving towards being increasingly dependent on computers and automation, one of the main challenges in the current decade has been to build secure applications, systems and networks. Alongside these challenges, the number of threats is rising exponentially due to the attack surface increasing through numerous interfaces offered for each service. To alleviate the impact of these threats, researchers have proposed numerous solutions; however, current tools often fail to adapt to ever-changing architectures, associated threats and 0-days. This manuscript aims to provide researchers with a taxonomy and survey of current dataset composition and current Intrusion Detection Systems (IDS) capabilities and assets. These taxonomies and surveys aim to improve both the efficiency of IDS and the creation of datasets to build the next generation IDS as well as to reflect networks threats more accurately in future datasets. To this end, this manuscript also provides a taxonomy and survey or network threats and associated tools. The manuscript highlights that current IDS only cover 25% of our threat taxonomy, while current datasets demonstrate clear lack of real-network threats and attack representation, but rather include a large number of deprecated threats, hence limiting the accuracy of current machine learning IDS. Moreover, the taxonomies are open-sourced to allow public contributions through a Github repository

    Cyber Security in the Maritime Industry: A Systematic Survey of Recent Advances and Future Trends

    Get PDF
    The paper presents a classification of cyber attacks within the context of the state of the art in the maritime industry. A systematic categorization of vessel components has been conducted, complemented by an analysis of key services delivered within ports. The vulnerabilities of the Global Navigation Satellite System (GNSS) have been given particular consideration since it is a critical subcategory of many maritime infrastructures and, consequently, a target for cyber attacks. Recent research confirms that the dramatic proliferation of cyber crimes is fueled by increased levels of integration of new enabling technologies, such as IoT and Big Data. The trend to greater systems integration is, however, compelling, yielding significant business value by facilitating the operation of autonomous vessels, greater exploitation of smart ports, a reduction in the level of manpower and a marked improvement in fuel consumption and efficiency of services. Finally, practical challenges and future research trends have been highlighted
    • 

    corecore